本文为senlie原创,转载请保留此地址:
lower_bound(应用于有序区间)
--------------------------------------------------------------------------------------------------------------------------
描写叙述:二分查找,返回一个迭代器指向每个"不小于 value "的元素, 或 value 应该存在的位置 思路: 1.循环直到区间长度为 0 2.假设 *middle < value,在后半段继续查找 3.假设 *middle >= value,在前半段继续查找 (等于的时候也会继续在前半段查找,所以能保证找到的是 lower bound) 源代码:template演示样例:inline ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value) { return __lower_bound(first, last, value, distance_type(first), iterator_category(first));}// forward_iterator_tag 版本号template ForwardIterator __lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Distance*, forward_iterator_tag) { Distance len = 0; distance(first, last, len); Distance half; ForwardIterator middle; while (len > 0) { half = len >> 1; middle = first; advance(middle, half); // 由于仅仅是 ForwardIterator,不能採用 middle = middle + half 的方式 if (*middle < value) { first = middle; ++first; len = len - half - 1; } // 由于 *middle >= value 时,会在前半段继续查找。所以终于找到的是 lower bound else len = half; } return first;}// random_access_iterator_tag 版本号template RandomAccessIterator __lower_bound(RandomAccessIterator first, RandomAccessIterator last, const T& value, Distance*, random_access_iterator_tag) { Distance len = last - first; // 整个区间长度 Distance half; RandomAccessIterator middle; while (len > 0) { half = len >> 1; //除以2 middle = first + half; if (*middle < value) { first = middle + 1; len = len - half - 1; // -half-1 是由于前面那段有first指向的元素和half指向的区间 } else //为什么这种代码能保证找到的是 lower bound ?--> 由于小于等于都是到前面一段区间查找,所以最后找到的一定是 lower bound len = half; } return first;}
int main(){ int A[] = { 1, 2, 3, 3, 3, 5, 8 }; const int N = sizeof(A) / sizeof(int); for (int i = 1; i <= 10; ++i) { int* p = lower_bound(A, A + N, i); cout << "Searching for " << i << ". "; cout << "Result: index = " << p - A << ", "; if (p != A + N) cout << "A[" << p - A << "] == " << *p << endl; else cout << "which is off-the-end." << endl; }}/*The output is:Searching for 1. Result: index = 0, A[0] == 1Searching for 2. Result: index = 1, A[1] == 2Searching for 3. Result: index = 2, A[2] == 3Searching for 4. Result: index = 5, A[5] == 5Searching for 5. Result: index = 5, A[5] == 5Searching for 6. Result: index = 6, A[6] == 8Searching for 7. Result: index = 6, A[6] == 8Searching for 8. Result: index = 6, A[6] == 8Searching for 9. Result: index = 7, which is off-the-end.Searching for 10. Result: index = 7, which is off-the-end.*/